Functions
Inequality.atkinson
Inequality.fgt
Inequality.gen_entropy
Inequality.gini
Inequality.headcount
Inequality.lorenz_curve
Inequality.mld
Inequality.poverty_gap
Inequality.theil
Inequality.watts
Inequality.atkinson
— Functionatkinson(v, ϵ)
Compute the Atkinson Index of a vector v
at a specified inequality aversion parameter ϵ
.
Examples
julia> using Inequality
julia> atkinson([8, 5, 1, 3, 5, 6, 7, 6, 3], 1.2)
0.1631765870035865
atkinson(v, w, ϵ)
Compute the weighted Atkinson Index of a vector v
at a specified inequality aversion parameter ϵ
, using weights given by a weight vector w
.
Weights must not be negative, missing or NaN. The weights and data vectors must have the same length.
Examples
julia> using Inequality
julia> atkinson([8, 5, 1, 3], [0.1,0.5,0.3,0.8], 1.2)
0.1681319821792493
Inequality.gini
— Functiongini(v)
Compute the Gini Coefficient of a vector v
.
Examples
julia> using Inequality
julia> gini([8, 5, 1, 3, 5, 6, 7, 6, 3])
0.2373737373737374
gini(v, w)
Compute the weighted Gini Coefficient of a vector v
using weights given by a weight vector w
.
Weights must not be negative, missing or NaN. The weights and data vectors must have the same length.
Examples
julia> using Inequality
julia> gini([8, 5, 1, 3, 5, 6, 7, 6, 3], collect(0.1:0.1:0.9))
0.20652395514780775
Inequality.lorenz_curve
— Functionlorenz(v)
Compute the relative Lorenz Curve of a vector v
.
Returns two vectors. The first one contains the cumulative proportion of people. The second contains the cumulative share of income earned.
Examples
julia> using Inequality
julia> lorenz_curve([8, 5, 1, 3, 5, 6, 7, 6, 3])
([0.0, 0.1111111111111111, 0.2222222222222222, 0.3333333333333333, 0.4444444444444444, 0.5555555555555556, 0.6666666666666666, 0.7777777777777778, 0.8888888888888888, 1.0],
│ [0.0, 0.022727272727272728, 0.09090909090909091, 0.1590909090909091, 0.2727272727272727, 0.38636363636363635, 0.5227272727272727, 0.6590909090909091, 0.8181818181818182, 1.0])
lorenz(v, w) Compute the weighted Lorenz Curve of a vector v
using weights given by a weight vector w
.
Weights must not be negative, missing or NaN. The weights and data vectors must have the same length.
Returns two vectors. The first one contains the cumulative proportion of weighted people. The second contains the cumulative share of income earned.
Examples
julia> using Inequality
julia> lorenz_curve([8, 5, 1, 3, 5, 6, 7, 6, 3], collect(0.1:0.1:0.9))
([0.0, 0.06666666666666667, 0.08888888888888889, 0.13333333333333333, 0.2222222222222222, 0.3333333333333333, 0.5333333333333333, 0.6666666666666666, 0.8444444444444444, 1.0],
[0.0, 0.013761467889908256, 0.05045871559633028, 0.0963302752293578, 0.1513761467889908, 0.2660550458715596, 0.38990825688073394, 0.555045871559633, 0.7752293577981653, 1.0])
Inequality.mld
— Functionmld(v)
Compute the Mean log deviation of a vector v
.
Examples
julia> using Inequality
julia> mld([8, 5, 1, 3, 5, 6, 7, 6, 3])
0.1397460530936332
mld(v, w)
Compute the weighted Mean log deviation of a vector v
using weights given by a weight vector w
.
Weights must not be negative, missing or NaN. The weights and data vectors must have the same length.
Examples
julia> using Inequality
julia> mld([8, 5, 1, 3, 5, 6, 7, 6, 3], collect(0.1:0.1:0.9))
0.10375545537468206
Inequality.gen_entropy
— Functiongen_entropy(v, α)
Compute the Generalized Entropy Index of a vector `v` at a specified parameter `α`.
Examples
julia> using Inequality
julia> gen_entropy([8, 5, 1, 3, 5, 6, 7, 6, 3], 2)
0.09039256198347094
gen_entropy(v, w, α)
Compute the Generalized Entropy Index of a vector v
, using weights given by a weight vector w
at a specified parameter α
.
Weights must not be negative, missing or NaN. The weights and data vectors must have the same length.
Examples
julia> using Inequality
julia> gen_entropy([8, 5, 1, 3, 5, 6, 7, 6, 3], collect(0.1:0.1:0.9), 2)
0.0709746654322026
Inequality.watts
— Functionwatts(v, k)
Compute the Watts Poverty Index of a vector `v` at a specified absolute
poverty line `k`.
Examples
julia> using Inequality
julia> watts([8, 5, 1, 3, 5, 6, 7, 6, 3], 4)
0.217962056224828
watts(v, w, α)
Compute the Watts Poverty Index of a vector v
at a specified absolute poverty line α
, using weights given by a weight vector w
.
Weights must not be negative, missing or NaN. The weights and data vectors must have the same length.
Examples
julia> using Inequality
julia> watts([8, 5, 1, 3, 5, 6, 7, 6, 3], collect(0.1:0.1:0.9), 4)
0.17552777833850716
Inequality.theil
— Functiontheil(v)
Compute the Theil Index of a vector `v`.
Examples
julia> using Inequality
julia> theil([8, 5, 1, 3, 5, 6, 7, 6, 3])
0.10494562214323544
theil(v, w)
Compute the Theil Index of a vector v
, using weights given by a weight vector w
.
Weights must not be negative, missing or NaN. The weights and data vectors must have the same length.
Examples
julia> using Inequality
julia> theil([8, 5, 1, 3, 5, 6, 7, 6, 3], collect(0.1:0.1:0.9))
0.08120013911680612
Inequality.fgt
— Functionfgt(v, α, z)
Compute the Foster–Greer–Thorbecke Index of a vector v
at a specified α
and a given poverty threshold z
.
Examples
julia> using Inequality
julia> fgt([8, 5, 1, 3, 5, 6, 7, 6, 3], 2, 4)
0.0763888888888889
fgt(v, w, α, z)
Compute the Foster–Greer–Thorbecke Index of a vector v
at a specified α
and a given poverty threshold z
, using weights given by a weight vector w
.
Weights must not be negative, missing or NaN. The weights and data vectors must have the same length.
Examples
julia> using Inequality
julia> fgt([8, 5, 1, 3, 5, 6, 7, 6, 3], collect(0.1:0.1:0.9), 2, 4)
0.05555555555555555
Inequality.headcount
— Functionheadcount(v, z)
Compute the Headcount Ratio of a vector v
at a specified poverty threshold z
.
Examples
julia> using Inequality
julia> headcount([8, 5, 1, 3, 5, 6, 7, 6, 3], 4)
0.3333333333333333
headcount(v, w, z)
Compute the Headcount Ratio of a vector v
at a specified poverty threshold z
, using weights given by a weight vector w
.
Weights must not be negative, missing or NaN. The weights and data vectors must have the same length.
Examples
julia> using Inequality
julia> headcount([8, 5, 1, 3, 5, 6, 7, 6, 3], [0.1,0.5,0.3,0.8,0.1,0.5,0.3,0.8,0.2], 4)
0.36111111111111116
Inequality.poverty_gap
— Functionpoverty_gap(v, z)
Compute the Poverty Gap of a vector v
at a specified poverty threshold z
.
Examples
julia> using Inequality
julia> poverty_gap([8, 5, 1, 3, 5, 6, 7, 6, 3], 4)
0.1388888888888889
poverty_gap(v, w, z)
Compute the Poverty Gap of a vector v
at a specified poverty threshold z
, using weights given by a weight vector w
.
Weights must not be negative, missing or NaN. The weights and data vectors must have the same length.
Examples
julia> using Inequality
julia> poverty_gap([8, 5, 1, 3, 5, 6, 7, 6, 3], [0.1,0.5,0.3,0.8,0.1,0.5,0.3,0.8,0.2], 4)
0.13194444444444445