Functions

Inequality.atkinsonFunction
atkinson(v, ϵ)

Compute the Atkinson Index of a vector v at a specified inequality aversion parameter ϵ.

Examples

julia> using Inequality
julia> atkinson([8, 5, 1, 3, 5, 6, 7, 6, 3], 1.2)
0.1631765870035865
source
atkinson(v, w, ϵ)

Compute the weighted Atkinson Index of a vector v at a specified inequality aversion parameter ϵ, using weights given by a weight vector w.

Weights must not be negative, missing or NaN. The weights and data vectors must have the same length.

Examples

julia> using Inequality
julia> atkinson([8, 5, 1, 3], [0.1,0.5,0.3,0.8], 1.2)
0.1681319821792493
source
Inequality.giniFunction
gini(v)

Compute the Gini Coefficient of a vector v .

Examples

julia> using Inequality
julia> gini([8, 5, 1, 3, 5, 6, 7, 6, 3])
0.2373737373737374
source
gini(v, w)

Compute the weighted Gini Coefficient of a vector v using weights given by a weight vector w.

Weights must not be negative, missing or NaN. The weights and data vectors must have the same length.

Examples

julia> using Inequality
julia> gini([8, 5, 1, 3, 5, 6, 7, 6, 3], collect(0.1:0.1:0.9))
0.20652395514780775
source
Inequality.lorenz_curveFunction

lorenz(v)

Compute the relative Lorenz Curve of a vector v .

Returns two vectors. The first one contains the cumulative proportion of people. The second contains the cumulative share of income earned.

Examples

julia> using Inequality
julia> lorenz_curve([8, 5, 1, 3, 5, 6, 7, 6, 3])
([0.0, 0.1111111111111111, 0.2222222222222222, 0.3333333333333333, 0.4444444444444444, 0.5555555555555556, 0.6666666666666666, 0.7777777777777778, 0.8888888888888888, 1.0], 
│ [0.0, 0.022727272727272728, 0.09090909090909091, 0.1590909090909091, 0.2727272727272727, 0.38636363636363635, 0.5227272727272727, 0.6590909090909091, 0.8181818181818182, 1.0])
source

lorenz(v, w) Compute the weighted Lorenz Curve of a vector v using weights given by a weight vector w.

Weights must not be negative, missing or NaN. The weights and data vectors must have the same length.

Returns two vectors. The first one contains the cumulative proportion of weighted people. The second contains the cumulative share of income earned.

Examples

julia> using Inequality
julia> lorenz_curve([8, 5, 1, 3, 5, 6, 7, 6, 3], collect(0.1:0.1:0.9))
([0.0, 0.06666666666666667, 0.08888888888888889, 0.13333333333333333, 0.2222222222222222, 0.3333333333333333, 0.5333333333333333, 0.6666666666666666, 0.8444444444444444, 1.0],
[0.0, 0.013761467889908256, 0.05045871559633028, 0.0963302752293578, 0.1513761467889908, 0.2660550458715596, 0.38990825688073394, 0.555045871559633, 0.7752293577981653, 1.0])
source
Inequality.mldFunction
mld(v)

Compute the Mean log deviation of a vector v.

Examples

julia> using Inequality
julia> mld([8, 5, 1, 3, 5, 6, 7, 6, 3])
0.1397460530936332
source
mld(v, w)

Compute the weighted Mean log deviation of a vector v using weights given by a weight vector w.

Weights must not be negative, missing or NaN. The weights and data vectors must have the same length.

Examples

julia> using Inequality
julia> mld([8, 5, 1, 3, 5, 6, 7, 6, 3], collect(0.1:0.1:0.9))
0.10375545537468206
source
Inequality.gen_entropyFunction
gen_entropy(v, α)

Compute the Generalized Entropy Index of a vector `v` at a specified parameter `α`.

Examples

julia> using Inequality
julia> gen_entropy([8, 5, 1, 3, 5, 6, 7, 6, 3], 2)
0.09039256198347094
source
gen_entropy(v, w, α)

Compute the Generalized Entropy Index of a vector v, using weights given by a weight vector w at a specified parameter α.

Weights must not be negative, missing or NaN. The weights and data vectors must have the same length.

Examples

julia> using Inequality
julia> gen_entropy([8, 5, 1, 3, 5, 6, 7, 6, 3], collect(0.1:0.1:0.9), 2)
0.0709746654322026
source
Inequality.wattsFunction
watts(v, k)

Compute the Watts Poverty Index of a vector `v` at a specified absolute 
poverty line `k`.

Examples

julia> using Inequality
julia> watts([8, 5, 1, 3, 5, 6, 7, 6, 3], 4)
0.217962056224828
source
watts(v, w, α)

Compute the Watts Poverty Index of a vector v at a specified absolute poverty line α, using weights given by a weight vector w.

Weights must not be negative, missing or NaN. The weights and data vectors must have the same length.

Examples

julia> using Inequality
julia> watts([8, 5, 1, 3, 5, 6, 7, 6, 3], collect(0.1:0.1:0.9), 4)
0.17552777833850716
source
Inequality.theilFunction
theil(v)

Compute the Theil Index of a vector `v`.

Examples

julia> using Inequality
julia> theil([8, 5, 1, 3, 5, 6, 7, 6, 3])
0.10494562214323544
source
theil(v, w)

Compute the Theil Index of a vector v, using weights given by a weight vector w.

Weights must not be negative, missing or NaN. The weights and data vectors must have the same length.

Examples

julia> using Inequality
julia> theil([8, 5, 1, 3, 5, 6, 7, 6, 3], collect(0.1:0.1:0.9))
0.08120013911680612
source
Inequality.fgtFunction
fgt(v, α, z)

Compute the Foster–Greer–Thorbecke Index of a vector v at a specified α and a given poverty threshold z.

Examples

julia> using Inequality
julia> fgt([8, 5, 1, 3, 5, 6, 7, 6, 3], 2, 4)
0.0763888888888889
source
fgt(v, w, α, z)

Compute the Foster–Greer–Thorbecke Index of a vector v at a specified α and a given poverty threshold z, using weights given by a weight vector w.

Weights must not be negative, missing or NaN. The weights and data vectors must have the same length.

Examples

julia> using Inequality
julia> fgt([8, 5, 1, 3, 5, 6, 7, 6, 3], collect(0.1:0.1:0.9), 2, 4)
0.05555555555555555
source
Inequality.headcountFunction
headcount(v, z)

Compute the Headcount Ratio of a vector v at a specified poverty threshold z.

Examples

julia> using Inequality
julia> headcount([8, 5, 1, 3, 5, 6, 7, 6, 3], 4)
0.3333333333333333
source
headcount(v, w, z)

Compute the Headcount Ratio of a vector v at a specified poverty threshold z, using weights given by a weight vector w.

Weights must not be negative, missing or NaN. The weights and data vectors must have the same length.

Examples

julia> using Inequality
julia> headcount([8, 5, 1, 3, 5, 6, 7, 6, 3], [0.1,0.5,0.3,0.8,0.1,0.5,0.3,0.8,0.2], 4)
0.36111111111111116
source
Inequality.poverty_gapFunction
poverty_gap(v, z)

Compute the Poverty Gap of a vector v at a specified poverty threshold z.

Examples

julia> using Inequality
julia> poverty_gap([8, 5, 1, 3, 5, 6, 7, 6, 3], 4)
0.1388888888888889
source
poverty_gap(v, w, z)

Compute the Poverty Gap of a vector v at a specified poverty threshold z, using weights given by a weight vector w.

Weights must not be negative, missing or NaN. The weights and data vectors must have the same length.

Examples

julia> using Inequality
julia> poverty_gap([8, 5, 1, 3, 5, 6, 7, 6, 3], [0.1,0.5,0.3,0.8,0.1,0.5,0.3,0.8,0.2], 4)
0.13194444444444445
source