User Guide
Inequality.jl
provides functions to compute income and wealth inequality estimates. This guide will show how to use them.
Weighted and unweighted estimates
All the functions in the package provide methods to compute both weighted and unweighted estimates. The details of the functions can be seen in the Library section of the documentation.
All functions requiere the vector for which the estimate is to be computed as first argument. They also have an optional second argument to pass a vector of weights.
using Inequality
v = collect(1:1:20)
w = collect(0.1:0.1:2)
gini(v) # unweighted
# 0.3166666666666666
gini(v, w) # weighted
# 0.19904761904761914
The functions can also use weights from StatsBase
, such as:
using StatsBase
gini(v, Weights(w))
# 0.19904761904761914
gini(v, pweights(w))
# 0.19904761904761914
Certain functions have extra parameters. These should be passed after the vector for which the estimate is to be computed and the optional weights.
For example, the Atkinson Index uses an aversion parameter ϵ.
atkinson(v, 2) # unweighted
# 0.47056705423923484
atkinson(v, w, 2) # weighted
# 0.23170731707317072
Passing a DataFrame or GroupedDataFrame
The package functions also work using DataFrame
or GroupedDataFrame
.
The following example shows how to use DataFrames.combine()
to produce the Gini Coefficient of a DataFrame
column v
.
using DataFrames
df = DataFrame(v = v, w = w)
combine(df, :v => gini)
#1×1 DataFrame
# Row │ v_gini
# │ Float64
#─────┼──────────
# 1 │ 0.316667
The same function can be used to compute the weighted version of the estimate. This only requieres to pass both the v
and w
columns to the gini()
function. The DataFrames
package User Guide provides further explanations on how to use DataFrames.combine()
with multiple variables and/or anonymous functions.
combine(df, [:v, :w] => (x, y) -> gini(x, y) )
#1×1 DataFrame
# Row │ v_w_function
# │ Float64
#─────┼──────────────
# 1 │ 0.199048
Below you can see an example of Inequality.jl
functions working with a GroupedDataFrame
.
group = vcat(repeat(["a"], 10), repeat(["b"], 10))
df_grouped = DataFrame(v = v,
w = w,
group = group)
combine(groupby(df_grouped, :group), :v => gini)
#2×2 DataFrame
# Row │ group v_gini
# │ String Float64
#─────┼──────────────────
# 1 │ a 0.3
# 2 │ b 0.106452
combine(groupby(df_grouped, :group), [:v, :w] => (x, y) -> gini(x, y))
#2×2 DataFrame
# Row │ group v_w_function
# │ String Float64
#─────┼──────────────────────
# 1 │ a 0.196364
# 2 │ b 0.100754